Why KIP ?

We are in a digitally connected world where constant interactions are creating networks that have a personality resembling real world human networks. KIP is essentially a cooperative digital mesh that supports creating the digital order. Krama Intelligent Protocol seamlessly brings together Intelligence, Connectedness and Trust (the new ICT!) to create a fundamental digital fabric on which new digital services can be directly built using distributed intelligence.

Challenges of existing blockchain ecosystems:

  1. Lack of value measure
    Business transactions in the new digital era struggle to enable new decision making data & actionable insights without hybrid perspectives on the said transactions. This lack in perspectives is henceforth creating a web sphere of low grade data that is not fit for consumption by advanced models. This gives rise to TDU - the Total Digital Utility in KIP that enables application of multiple information vectors right at the time of the interaction, thereby able to capture business values beyond data.

  2. Inadequate support to big data & cognition
    Although big data is critical in enhancing various components in the ecosystem ranging from user experience to business models, blockchain is an ineffective and costly medium to persist big data directly. We may have discovered a few external offchain data storage services such as BigchainDB/Ocean Protocol [4], IPFS [5] , StorJ, Swarm, SIA etc.. However, the mentioned services have failed to deliver a fully mature storage systems capable of serving query requests of heterogeneous forms in a truly inline distributed yet permanent manner without the need of an external token whose value might be subjected to volatility [5]. KIP addresses this issue with a highly available in-line distributed file system that charges users for off-chain data storage in a consistent & balanced manner with flexible options to permission the data as required.

  3. Partial scale-outs
    The Gen1 & Gen2 blockchain platforms have been able to distribute power across all the nodes in their respective networks. The Proof of Work is followed by its demerits of selective absorption & compete, with the ability to gain domination in the entire the network by owning majority of the high-frequency ASICs. The Proof of Stake eliminates the unnecessary need for energy in mining and funnels the power distribution concept of Casper [6] by allowing all vested actors to be able to bet / bid on the proposed block, but lose the vested assets if malicious in act. However, this approach is haunted by the demonic demerit of capitalism & corroboration between miners/verifying nodes to establish centralized power to mint block with favourable transactions. An abrupt increase in the number of nodes is not practically addressed by these consensus models. KIP resolves this issue using TARA's ability to organize the new & existing nodes in a sentinel manner with minimum intervention.

  4. Inadequate throughput
    Both the Gen1 & Gen2 blockchain platforms have been successfully able to distribute the power among the actors with minimal tradeoffs. However, the platforms have become inefficient in supporting enterprise-grade throughput,with its inability to pass hundreds of thousands or millions of transactions per second. Enterprise businesses with broad range of consumer base & variety of users favour platforms that supports 'scale up' model to ensure availability and aggravate the movements of transactions within fraction of seconds. This is unfortunately a failure in existing blockchain ecosystem as there is an inability to classify the nature & interest of each mining/verifying node entity. KIP addresses this issue with the concept of 'Modulated Trust', ably supported by TARA 'state channels' & run by mutually consented consortiums in each vertical of their own.

  5. Gas volatility & Forks
    We understand predictable cost of ownership & operation favours any business application to move further step ahead towards blockchain adoption. Although Gen1 blockchain platforms focused on movement of assets in a peer to peer fashion, the Gen2 blockchain platforms targeting 'real-world' scenarios failed to consider the changes in the gas cost in the long term affected by the associated volatility in the market of their own. The dollar equivalent gas-price payable incurred to print a basic welcome text string using a smart contract today, has increased by several folds since its deployment in 2016. This uncertainty in the gas price & political/financial motivations behind forks has discouraged many businesses to deploy critical components, if not the entire application on the blockchain. KIP addresses these uncertainties by hosting a fork-resistant blockchain with self-balancing utilitarian formula for the KIP token - which serves as the universal interface of payment to all services.